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Note 

Least-Squares Solution 

for the Blunt Body Hypersonic Flow Problem 

The problem of the detached shock wave has recently received considerable 
attention [2,3]. In this note a variational method [4], the discrete nonlinear least 
squares method is applied to such a problem. The objective of this particular 
numerical experiment is to provide a first approximation to the solution for the 
flow of gas in a coaxial plasma accelerator in the M.H.D. approximation. This 
problem involves a free boundary of the “body” but with a known pressure 
distribution [5]. 

The basic idea of a variational approach is the transformation of a boundary 
value problem into a problem of finding the minimum of certain functionals. 
This is performed completely numerically for ideal gas hypersonic flow around 
a sphere, whose solution is known [l]. This problem may be written in the form 
of three differential equations for unknowns Y = (u, v,p) with independent 
variables x = (r, 0): 

MT 0 = r(p), + (~4~ + p(2v + 2.4 cotan 8) = 0, 
f2(x, Y) = rp,lp + rvv, + UV~ - u2 = 0, 

&lxx, y> = PO/P + UU~ + rvu, + uv = 0, 

where partial derivatives are denoted by subscripts and where 

0) 

---Y.--P_ P=y-lh’ htot = h + v = ; . 

The quantities u, v, p, p and h are two components of velocity, pressure, mass 
density and enthalpy respectively, normalized to umsx , v,~ , p,,v~.J2, p. and 

2 v,, , respectively. The subscript 0 is related to free stream values, velocity umsx 
is related to total enthalpy htot . The boundary conditions are 

v=o for 6 = 0 and u=o for 8 = 0, (3) 

Y shock = Yshock(Po > ho, uo , cl>, (4) 

where Y&o& denotes the value just behind the shock wave. The angle u is shown 
on Fig. la. Conditions (5) are called Hugoniot relations [l]. Note that it is not 
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FIG. 1. Diagram of the axisymmetric flow system showing the variables and notation used. 
In (b), the variable r is replaced by 4 = (r - rbodu)/(rsheo~ - rbOdy). The region of interest is 
represented by the points x1 , x2 ,..., XM. 

possible in this particular case to write the boundary conditions for 8 = O,,, , 
which are required if the finite difference approach is to be employed. 

A great deal of theoretical work has been done on the problem of finding 
sufficiently wide classes of functions in order that some functionals actually attain 
their minimum [4]. This note presents two modifications of [4]: 

(i) The class of problems considered will be the one for which the approxi- 
mate form of the solution, ?(x, A) = (j$ , & , j&), is known. 

For example, let 

u m y1 = A,B + ~~83 + ~~85 + (~,e + A,83 + 44w 

+ (49 + 483 + 486) e, 

u w jj2 = A,, + A,,02 + A,,04 + (4, + -h4e2 + h5w5 

+ (A,, + 482 + ~d4~~, 

p w jj3 = A,, + A,,82 + A2,e4 + (A,, + A,,@ + A24wt 
+ 6425 + A2se2 + A27e4)e2? 

(5) 

rshock M A,* + A,*82 + ~,*64. 

(ii) In this analysis of the detached shock wave problem, the position and 
shape of one part of the boundary (shock wave) is given implicitly by the Hugoniot 
relations (4). 

The method proposed differs from the method of integral relations [l], 
Scheme III, in the form of the functions given by (5) and in the method by which 
A and A* are determined. 
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Variational Formulation 

Let A* and the points x be given. The solution of the boundary value problem 
[Eqs. (l)-(4)] is given by the set A for which the functional given by 

F(A) = c wk2 *fk2(xi , P) (6) 
k=l,3 

i=l,M 

is minimal. The determination of weighting factors wk will be discussed later. 
A second functional 

F*(A*) = F(A(A*)) (7) 

is introduced for obtaining the solution for A* under assumption that the correct 
shock shape and position is obtained when F* is minimized. 

The usual method [4] for minimizing F and F* involves the solution of equations 

aF/BAl=O, 1 = 1,2 ,..., N and aF*/aAk* = 0, k = 1, 2, 3, (8) 

respectively, where the derivatives are replaced by numerical differentiation. If N 
is set to 27 in (5), the boundary conditions (3) and (4) may be used to reduce N 
to 15. Providing a reasonable first guess for A and A* is available, the solution 
to Eqs. (3) and (4) may be obtained by the two level minimization of F and F* 
using some generalized Newton method (e.g., Newton-Kantorovich method [4]). 
The convergence of the above method however was found to be slow. An alternate 
technique was used to accomplish the minimizations: 

(i) Minimization of F(A). A more rapid convergence can be obtained if a 
better approximation to the minimized functional is available. This may be 
achieved by linearizing the functionsf& , F(xi, A)], k = 1,2, 3; i = 1,2,..., M; 
rather than linearizing the functions of aF/aA, ; 1 = 1,2,..., N; in (6). This is 
performed by using the weighted nonlinear least squares approach to solve the 
system of 3M equations 

fk[xi , p(x, , A)] = 0 (9) 

for AI , A, ,..., AN . This is accomplished by iterative improvements of a given 
first guess AG through the solution of a linear least squares problem in the neigh- 
bourhood of AG. 

(ii) Minimization of F*(A*). The minimization of the second functional 
can be performed as follows: 

(a) in the neighbourhood of the first guess (A,*, A2*, A,*) = (x1*, x2*, x3*), 
N* > 10 values of F* are evaluated, 

(b) F* is then approximated by the polynomial 

F* M F(a) = a,x12 + a2x22 + a,xs2 + a4xlxZ + a,x,x, + a6x2x3 + a,x, 
+ w2 + ash + alo . (10) 
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(c) if ai > 0 for i = l,..., 6, the next guess for (x1*, x2*, x3*) is given by 
the solution of 

aFlax, = 0; k = 1,2, 3; (11) 

if ai < 0 for some i E (I,..., 6), the next guess can be determined using only first 
derivatives. 

The weighting factors wk in (6) are determined by using the assumption that 
the first guesses for A and A* are good for at least small A0 (i.e., near axis) as 
follows: 

(i) For the grid in Fig. lb values for fk(xi , P) are evaluated with 
de* = &?/lo. 

(ii) W, are then determined from the solution of the equations 

k=1.3 

The results obtained using the method described above are compared with 
those obtained in [1] in Fig. 2. 

Conclusions 

The following conclusions can be drawn from the above analysis: 

(i) Detached shock wave problems can be solved using the least squares 
approach. 

(ii) The calculation time (typically 2 minutes on IBM 360/67 for the case of 
a sphere in an ideal gas with A4 = 24, N = 15 and three iterations for A*) may 
be improved by reducing the number of xi , Aj , A,* used, or else using a faster 
minimization procedure. 

(iii) The solution is relatively insensitive to the values of weighting factors 
wk , but for w1 = w2 = w3 = 1 the procedure is unstable. 

(iv) For the case a body of an arbitrary shape, rather than using a complex 
transformation of independent variables and partial derivatives in (1), the integral 
form of the conservation laws (e.g., JIS pv, dS = 0) could be used. 

In summary, the solution of complex problems in applied physics and engi- 
neering can be obtained in a manner similar to that described in this note providing 
some preliminary knowledge of the form of the solution that is expected is available. 
In this particular study, the flow in a coaxial plasma accelerator was approximated 
by quasi-one-dimensional model involving singly and double ionized species [6]. 
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FIG. 2. Comparison of calculated flow protiles for a sphere in a Mach = 10, y  = 1.4 ideal 
gas flow. The solid curves are from [l], while the dotted lines represent the present calculation; 
where w1 = 0.15, wa = 0.61, wa = 0.77, three iterations of A*, M = 24, N = 15. The resulting 
shock wave is rshoCk = 1.175 + 0.1182 + 0.04404. 
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